
A model of strained epitaxy on an alloyed substrate

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 S2203

(http://iopscience.iop.org/0953-8984/16/22/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 15:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/22
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) S2203–S2210 PII: S0953-8984(04)74479-3

A model of strained epitaxy on an alloyed substrate

V I Tokar1,2 and H Dreyssé1
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Abstract
We propose a simple model of strained epitaxy with identical atoms being
deposited on a substrate which is a disordered alloy. The model is aimed
to be suitable for studies of experimentally observed complicated kinetics in
such systems with the use of the Monte Carlo technique. Therefore, major
attention is paid to the computational efficiency of the model. The techniques
developed can be applied to one-dimensional (1D) as well as to two-dimensional
heteroepitaxial systems with rectangular lattices of deposition sites. But for
simplicity the formalism is presented mainly for 1D systems. In this case
the model can be exactly solved at equilibrium with the use of the technique
borrowed from the theory of protein folding. This is because in 1D the model
of strained heteroepitaxy is equivalent to the Muñoz–Eaton model of protein
folding. It is argued that at low temperature the model exhibits slow kinetics
characteristic of glassy systems. The existence of the exact solution can be
helpful in studying the approach to equilibrium in this complex system.

1. Introduction

The self-assembly of coherent nanostructures observed in some systems during strained
epitaxy [1] is a subject of extensive current research. One of the major goals of this research
is to develop techniques of controlled growth which is important in view of the potentially
rich technological applications of coherent nanostructures [2]. One of the processes widely
used to control the growth is the alloying both in the substrate [3, 4] and in the overlayer [5].
By changing the composition one usually aims to influence the misfit strain which is a major
factor in the nanostructure self-assembly [6]. As a by-product, the attachment to the substrate
and the kinetics are also strongly affected, which leads to complicated morphologies and
kinetics of formation of heteroepitaxial overlayers [7]. The complexity of the processes
observed experimentally is such that a rigorous interpretation is hardly possible without clear
understanding of many competing processes underlying their behaviour.

The aim of the present paper is to propose a simple model of strained epitaxy on an alloyed
substrate. Our major goal is to make the model appropriate for large scale Monte Carlo
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simulations, so the approximations will be made to ensure computational efficiency. We
achieve this by considering a rectangular geometry and the harmonic Frenkel–Kontorova model
(FKM) used previously for studying the deposition on a pure substrate [8]. Because the two-
dimensional (2D) generalization of our formalism in the case of the rectangular geometry
is rather trivial [8], below we consider only the one-dimensional (1D) case which, besides
being simpler for presentation, is also of practical interest in the studies of 1D heteroepitaxial
phenomena [9–11]. The 1D model we consider is exactly solvable at equilibrium [12, 13] so the
results of the MC simulations can be compared with the exact solution to check the approach
to equilibrium. As we will see, this is a nontrivial question in the case of the deposition on a
disordered substrate because in this case one may expect a considerable slowing down of the
kinetics similar to that observed in glassy systems [14, 15]. This glassy behaviour introduces
a new timescale which may seriously influence kinetic paths of self-organization phenomena.

2. The model

As we noted in the introduction, the lattice size misfit between the substrate and the growing
overlayer is a major factor influencing both the overlayer growth mode and its morphology [6].
A simple approach to theoretical description of the misfit is provided by the 1D FKM which has
frequently been used in qualitative [16, 17] and semi-quantitative studies [18, 19] of strained
epitaxy. In the present paper we consider a modified FKM appropriate to coherent strained
epitaxy on an alloyed substrate.

We consider an ensemble of a fixed number (N) of atoms coherently deposited on a 1D
‘surface’ which is a binary alloy consisting of two atomic species A and B. Let us first consider
a model with the potential interactions between the atoms:

U =
∑

i

ni Vi (Ri + ui ) + 1
2

∑
i j

ni n j V (ui + Ri − u j − R j),

where Ri = ai (a the lattice constant, i any integer), ni = 0, 1 is the occupation number of
site i by an adatom, ui the adatom displacement from the symmetric position Ri , Vi is the
potential of interaction with the substrate near the site i , and V the interatomic potential. For
simplicity we assume that the substrate potential Vi(r) can take two values VA(r) and VB(r)

as in a binary alloy. In reality the potential of an alloyed substrate is more complicated. For
example, in the case of the deposition on the steps of the vicinal surfaces considered in [20]
and [8] the deposited atom has five nearest neighbours, so even in the case of a disordered
binary alloy the substrate potential will be a random mixture of five potentials. This, however,
is a trivial complication which can be easily accounted for by considering a more complicated
probability distribution of the substrate potential.

The analysis of the system considerably simplifies at low temperatures where it can be
approximately reduced to a lattice gas model [8]. This is achieved by exploiting the fact that
the residence time of atoms at the lattice sites can be arbitrarily large due to the Arrhenius
law obeyed by the probability of activated hopping over the potential barriers separating
neighbouring sites [21]. The dynamics of the variables ui , on the other hand, do not have
any energy barriers. So at sufficiently low temperature these variables are capable of reaching
their thermal equilibrium distribution during the time intervals between the atomic hops, i.e.,
with the atomic configuration remaining unchanged. Averaging over ui will leave us with an
effective nonequilibrium free energy function Feff of variables ni only:

exp(−Feff/kBT ) =
∫ ∏

{ni =1}
dui exp(−U/kBT ). (1)

This purely lattice model can be further used in both equilibrium and kinetic studies.
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For the purposes of qualitative analysis it will suffice to average out the displacement
variables in equation (1) in the harmonic approximation, i.e., by expanding Vi and V in the
above equation up to the second order in the displacement variables ui [18, 22] which is valid
for small |ui |/a. This reduces the integration in (1) to a multiple Gaussian integration which
can be performed analytically (see below).

To facilitate comparison with other studies based on the FKM [16, 23, 17, 18] we write
the harmonic approximation as the second order power series expansion in ui for Vi and in
ui − ui+1 for the pair potential Vp:

U ≈
∑

i

Vi ni +
1

2

∑
i

ni ki u
2
i +

1

2

∑
i j

ni n j Vi j +
K

2

∑
i

[(ui − ui+1 − f )2 − f 2]ni ni+1

=
∑

i

Vi ni +
1

2

∑
i j

Vi j ni n j +
K

2

∑
i j

Di j ui u j + K f
∑

i

ui∇ni ni+1 (2)

where Vi and Vi j are the values of the substrate and the pair potentials at the lattice sites for the
atom in the symmetric position (the zero-order approximation); f = −V ′(a)/V ′′(a) (where
V is the pair potential) is interpreted as the misfit parameter, the spring stiffness parameters
ki = kA, kB and K are the second derivatives of the corresponding potentials, Di j is the
dimensionless dynamical matrix defined by this equality, and the discrete gradient ∇ is defined
as ∇φi ≡ φi − φi−1. The most important simplification made in the above expansion is the
assumption that the misfit parameter f is the same for all adatoms irrespective of the substrate
atoms on which they reside. This approximation is crucial for our model because it allows us
to reduce the calculation of the Green functions below to simple recurrence schemes (see the
appendix). In the terminology used in the theory of disordered systems this approximation is
usually called the approximation of diagonal disorder.

With approximation (2) the statistical average (1) amounts to Gaussian integration to give

Feff =
∑

i

Vi ni +
1

2

∑
i j

ni n j Vi j − kBT

2

∑
ln det(kBT G)

− K f 2

2

∑
i

Gi j∇i ni ni+1∇ j n j n j+1, (3)

where matrix G is the inverse of D. Assuming the system is aligned along the x-axis we
ought to have also included the results of integration over the directions y and z. We do not
discuss these contributions here because in the harmonic approximation they do not depend
on the position of the atom in the system, so they are irrelevant to our present study. In cases
of necessity these terms can be easily recovered. We also note the entropic contribution (the
second term in the first line) which naturally appears in our formalism and which was shown
to be crucial for proper description of the processes of deposition [24] as well as for the correct
prediction of the shape of the atomic clusters [25].

Because of the gradient factors, only the ends of the contiguous chains of atoms contribute
to the last term of equation (3), leaving three matrix elements of Gi j in the sum over i j inside
every chain: two diagonal terms which we denote as G(l)

11 and G(l)
ll (l being the chain length)

and the matrix element G(l)
1l connecting the two ends of the chain. Furthermore, in the NN

approximation the matrix D is block diagonal because the atoms belonging to different chains
do not couple. Therefore, the determinant factorizes and the relaxation part of the free energy
which consists of the terms in equation (3) containing G takes the form

Frelax = −
∑

chains

{
kBT

2
ln det[kBT G(l)] +

K f 2

2
[G(l)

11 + G(l)
ll − 2G(l)

1l ]

}
≡

∑
chains

E (i)
l , (4)
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Figure 1. The chain energy per atom for pure substrates (the uppermost and the lowermost curves)
and for three randomly generated configurations for equiatomic substrate composition.

where the summation is over the atomic chains by which we understand any contiguous atomic
sequence surrounded by empty sites, including one isolated atom. The superscript (i) on El

stresses that the system is not translationally invariant so all quantities pertinent to the chains
depend on its exact placement. The same is true for the Green function elements G(l)

i j in which
we omitted the above superscript to simplify notation.

3. Size calibration and kinetics

For concreteness, let us consider a system with the parameters similar to those found in the
stressed Pt/Co system considered in [8]. Taking VNN as the energy unit, the model will exhibit
the size calibration if the K f 2 is also equal to unity and α = 0.15–0.2 with the calibrated chain
length being equal to seven (see the uppermost and the lowermost curves in figure 1). Let us
choose the substrate parameters as follows: αA = 0.15, αB = 0.2, VA = 0 (the reference
zero energy) and VB = −0.2. The absolute values of Vi (with respect to the zero reference
energy at the infinite separation) should be of the same order of magnitude as VNN = 1 and
their difference is assumed to be small because the substrate alloy is assumed to be random, so
the atomic components should not differ too much in their physical properties. For the same
reason the values of αi are also chosen to be of similar magnitude. The value of αA is lower
than that of αB because the harmonic part of the potential should be roughly proportional to
its r = 0 value [17].

In deposition on a pure substrate the system exhibits self-assembly into size calibrated
atomic chains provided the function El/ l has a minimum at some finite value of l [26]. This
can take place in the case when the misfit strain is sufficiently large [8]. In the case of an alloyed
substrate it is reasonable to assume that locally the atomic chains will also try to minimize
the E (i)

l / l ratio. But in this case the local atomic configuration of the substrate will not, as
a rule, be the most favourable for the global energy minimization. In figure 1 we generated
three random configurations corresponding to equiatomic substrate composition. It is seen that
the chains self-assembled at a randomly chosen place on the substrate are very far from the
absolute minimum of E (i)

l / l which corresponds to the value of the lowermost curve at l = 7.
Therefore, at low coverage the chains will strive to reach this absolute minimum by seeking the
places on the substrate where the B atoms are gathered together in rows of length greater than
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or equal to seven. To reach this configuration the atomic chain in an unfavourable place should
first disassemble into individual atoms and then seven of them should gather in the new ‘ideal’
place. We note that besides the energetic barrier at the first stage of decomposition, there also
exists an entropic barrier because not only should the atoms assemble together in the new place
but they also should arrive there in a sufficient quantity. This is because the optimum energy is
the property of the whole ensemble of the chain atoms, not of an individual atom. Therefore,
an atom may find a better place in a nonoptimum chain of the locally optimum length instead
of a place in a chain which is fully placed on the energetically favoured B atoms but is not of
the optimum length (which is seven in our case). We would like to stress that this behaviour
is specific to the strained coherent epitaxy with the parameters satisfying the size calibration
condition. In the case of incoherent structure, in view of the long time needed for the atomic
chains to be assembled in the optimal places, the creation of dislocations would have been an
easier way to release the strain energy.

In the case of high coverage there is no possibility for all deposited atoms to gather into
the places on the substrate with 100% B-atom content. In the case of equiatomic substrate
composition the probability of meeting at least seven B atoms in a row is of the order of
1/27, so at the coverages exceeding 7/27 ≈ 5.5% the attachment places with nonoptimal
compositions will also correspond to the global energy minimum. This poses a nontrivial
problem of optimization which can hardly be solved by a simple enumeration in view of the
large number of possible combinations.

According to the above picture equilibration kinetics of the system at low temperatures
can proceed as follows. After a random deposition on the substrate the adatoms will gather in
the clusters minimizing their E (i)

l / l ratio in the vicinity of a local energy minimum. Further
evolution towards the global (free) energy minimum will proceed through the transitions of
the chains over the local energetic barriers towards lower local energy minima. This picture
is similar to that described in [15] where it was shown that this kind of energy landscape is
common in many systems, such as glasses and proteins.

The analogy with the problem of protein folding is stressed by the fact that in 1D our model
is formally equivalent to the Muñoz–Eaton [27] model of protein folding. This can be shown
by mapping the relaxation energy (4) onto the lattice gas model as was done in [8, 13]. Namely,
it is easy to show that Frelax can be expanded into an infinite sum of multiatom interactions [8]

Frelax =
∑

i,l

V (i)
l ni ni+ · · · ni+(l−1), (5)

where the upper index of V (i)
l indicates that the expansion coefficients which are given by the

expression

V (i)
l = E (i)

l − 2E (i)
l−1 + E (i)

l−2 (6)

are valid for all l � 2 with E (i)
0 = E (i)

1 = 0. In contrast to the translationally invariant case
considered in [8, 13], in the present case the model with the Muñoz–Eaton type Hamiltonian

Feff =
∑

i

Vi ni + 1
2

∑
i j

Vi j ni n j + Frelax (7)

cannot be solved in the thermodynamic limit with the techniques developed in [13], and the
method of paper [12] for finite systems should be used. Thanks to the constant- f approximation
used by us the number of Green function matrix elements needed to compute all V (i)

l in the
above equations is relatively low and can be generated using the recursive procedure described
in the appendix for large size systems. The equilibrium quantities obtained with the use of the
exact solution can then be compared to the results of the MC simulation to study the approach
to the equilibrium which in glassy systems can be extremely slow [14].
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4. Conclusion

In this paper we have developed a simple model of strained epitaxy which is capable of
accounting for self-assembly of size calibrated clusters on alloyed substrates. We considered
explicitly only the 1D case but the formalism developed can be straightforwardly generalized to
2D systems with a rectangular geometry of deposition sites. This is because the relaxations in
the orthogonaldirections are mutually independent and the formulae derived for one dimension
can be applied to the two orthogonal directions without any modification [16]. In the case
when there is anisotropy between the two directions only the parameters K and f should be
appropriately adjusted.

Another modification of the model can be achieved in the MC simulations by introducing
atomic kinetics into the substrate. The mobility of the surface atoms is usually much larger
than the atomic diffusion in the substrate, therefore two competing timescales will appear: one
for the slow glassy kinetics of the surface atoms in search of the most favourable configuration
of the substrate atoms and another timescale due to the diffusion of the substrate atoms which
can provide a local atomic rearrangement to minimize the energy. Depending on the relative
efficiency of these competing processes one can observe different kinetics as well as changes
in the local composition of the substrate and the morphology of the overlayer [4]. Further
generalizations, such as accounting for the adlayer/substrate intermixing [28], are also possible
in principle but they would spoil the computation efficiency of the model. Still, in the cases of
intermixing of similar atoms, as in the Ge/Si case [28], one may expect some simplifications
because, as our computations show, the Green function matrix elements are not very sensitive
to small difference in the spring stiffness parameters.
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Appendix

According to equation (2)

D(l) =




1 + α1 −1 0 · · · 0 0 0
−1 2 + α2 −1 0 · · · 0 0
0 −1 2 + α3 −1 0 · · · 0
...

...
. . .

. . .
. . .

...
...

0 · · · 0 −1 2 + αl−2 −1 0
0 0 · · · 0 −1 2 + αl−1 −1
0 0 0 · · · 0 −1 1 + αl︸ ︷︷ ︸

l




, (A.1)

where αi = ki/K . Because matrices D(l) are tri-diagonal, their determinants satisfy
recurrence relations which can be used to calculate all quantities entering equations (4) and (6).
The diagonal elements of the matrix G(l) = 1/D(l) are

G(l)
ll = rl−1/ det D(l), (A.2)
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where rl−1 is the determinant of the matrix obtained from D(l) by crossing out its last row and
the last column:

rl−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + α1 −1 0 · · · 0 0
−1 2 + α2 −1 0 · · · 0
0 −1 2 + α3 −1 0 0
...

...
. . .

. . .
. . .

...

0 · · · 0 −1 2 + αl−2 −1
0 0 · · · 0 −1 2 + αl−1︸ ︷︷ ︸

l−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.3)

Expanding det D(l) with respect to the last row we get

det D(l) = (1 + αl)rl−1 − rl−2. (A.4)

Comparing this with equation (A.2) we get

G(l)
ll = 1/(1 + αl − dl−1), (A.5)

where dl−1 = rl−2/rl−1. Now, expanding the determinant (A.3) with respect to the elements
of the last row we get the following three-term recurrence relation:

rl−1 = (2 + αl−1)rl−2 − rl−3. (A.6)

But because equation (A.2) includes only the ratio rl−2/rl−1, by dividing equation (A.6) by
rl−2 we can transform it to a simpler form

1

dl−1
= 2 + αl−1 − dl−2. (A.7)

The off-diagonal matrix element G(l)
1l of the inverse matrix G(l) is equal to the ratio of the

determinant of the matrix obtained from D(l) by crossing out its last row and the first column
multiplied by (−1)l+1 and divided by det D(l). As is easy to see from equation (A.1), the matrix
thus obtained is a triangular matrix with the diagonal elements all being equal to −1. Hence
its determinant is equal to (−1)l−1 and

G(l)
1l = 1/ det D(l) = det G(l). (A.8)

From equation (A.4) we get

G(l)
1l = 1

det D(l)
= 1

rl−1(1 + α2 − dl−1)
= bl−1

1 + α2 − dl−1
= bl−1G(l)

ll , (A.9)

where bl−1 = 1/rl−1 = dl−1bl−2 (see the definition of dl−1 above). Finally, making the shift
l − 1 → l + 1 the above formulae can be summarized as{

G(l+1)

ll = 1/(1 + αl+1 − dl)

G(l+1)

1l = det G(l+1) = G(l+1)

1,l+1bl,
(A.10)

where dl and bl are generated by the recursion relations

dl+1 = 1/(2 + αl+1 − dl) and bl+1 = dl+1bl (A.11)

initialized by d0 = b0 = 1. The matrix element G(l+1)

11 is calculated in the same way by starting
the recurrence from the upper left corner of the matrix D(l+1). The matrix element G(l+1)

l1 is
equal to G(l+1)

1l due to the symmetry.
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[6] van der Merwe J H, Tönsing D L and Stoop P M 1994 Surf. Sci. 312 387

Henzler M 1996 Surf. Sci. 357/358 809
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